# All Al models are wrong, but some are useful ... for power systems

08 April 2025, cresROAD, CRESYM

Dr. Jochen L. Cremer Associate Professor www.jochen-cremer.com





Join at: vevox.app

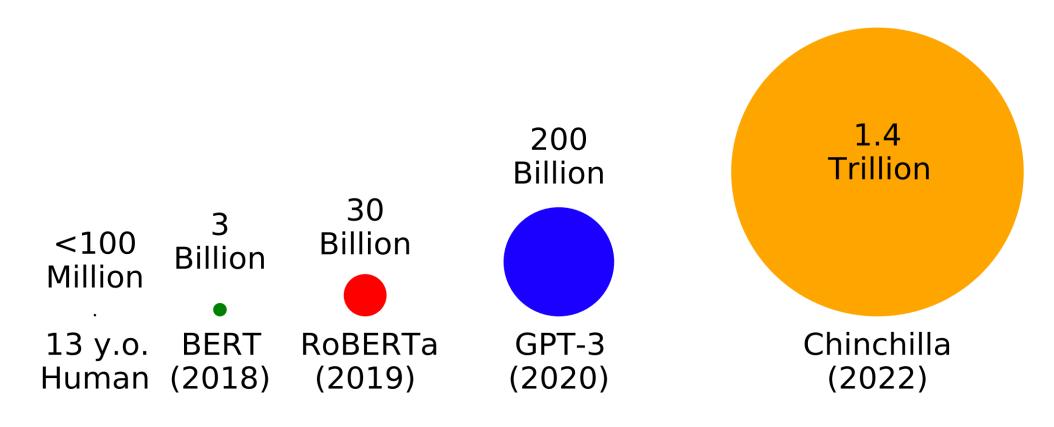
ID: 154-454-820

# Why not yet a technology breakthrough with AI in power systems?

```
lack of open data unsuitable nn's not reliab
  limits to r&d funds high risk return on investment high uncertainty
            lacks explainability
                         not accurate 100% lack of trust
                            low trl risk adverse
      a bit complex
    data challenges
conservatism statistical errors
grid structure outages rare events
                    data is weird
ps are quite complex poor data
                conservative/safe
```



### Is more and more data the answer?







Computation is measured in total petaFLOP, which is 10<sup>15</sup> floating-point operations<sup>1</sup> estimated from AI literature, albeit with some uncertainty. Estimates are expected to be accurate within a factor of 2, or a factor of 5 for recent undisclosed models like GPT-4.

Training computation (petaFLOP) Academia 10 billion Academia and industry collaboration Industry Other 100,000 1 0.00001 < 0.00001 Jul 2, 1950 Apr 19, 1965 Dec 27, 1978 Sep 4, 1992 May 14, 2006 Jan 21, 2020 **Publication date** 

Data source: Epoch (2024)

OurWorldinData.org/artificial-intelligence | CC BY

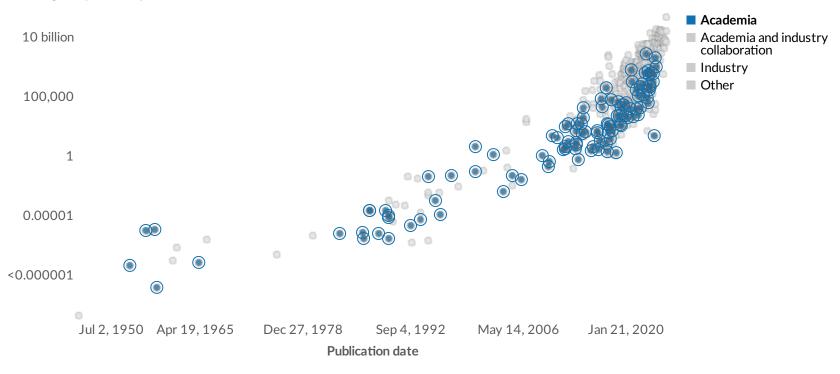


<sup>1.</sup> Floating-point operation: A floating-point operation (FLOP) is a type of computer operation. One FLOP represents a single arithmetic operation involving floating-point numbers, such as addition, subtraction, multiplication, or division.



Computation is measured in total petaFLOP, which is 10<sup>15</sup> floating-point operations<sup>1</sup> estimated from Al literature, albeit with some uncertainty. Estimates are expected to be accurate within a factor of 2, or a factor of 5 for recent undisclosed models like GPT-4.

Training computation (petaFLOP)



Data source: Epoch (2024)

OurWorldinData.org/artificial-intelligence | CC BY

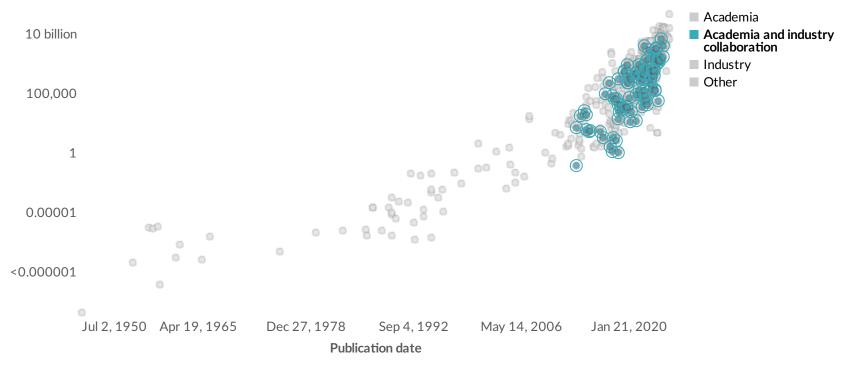


**<sup>1.</sup> Floating-point operation**: A floating-point operation (FLOP) is a type of computer operation. One FLOP represents a single arithmetic operation involving floating-point numbers, such as addition, subtraction, multiplication, or division.



Computation is measured in total petaFLOP, which is 10<sup>15</sup> floating-point operations<sup>1</sup> estimated from Al literature, albeit with some uncertainty. Estimates are expected to be accurate within a factor of 2, or a factor of 5 for recent undisclosed models like GPT-4.

Training computation (petaFLOP)



Data source: Epoch (2024)

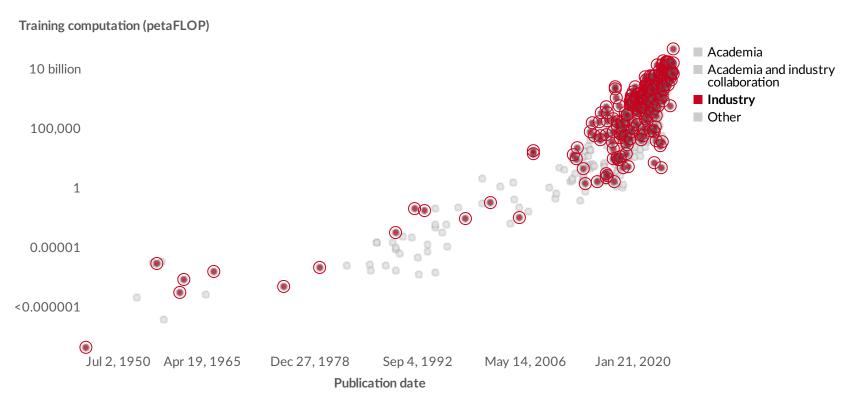
OurWorldinData.org/artificial-intelligence | CC BY



**<sup>1.</sup> Floating-point operation**: A floating-point operation (FLOP) is a type of computer operation. One FLOP represents a single arithmetic operation involving floating-point numbers, such as addition, subtraction, multiplication, or division.



Computation is measured in total petaFLOP, which is 10<sup>15</sup> floating-point operations<sup>1</sup> estimated from Al literature, albeit with some uncertainty. Estimates are expected to be accurate within a factor of 2, or a factor of 5 for recent undisclosed models like GPT-4.



Data source: Epoch (2024)

OurWorldinData.org/artificial-intelligence | CC BY

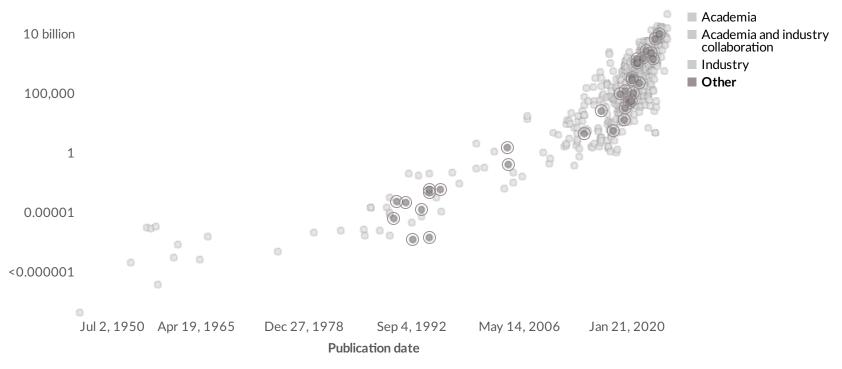


**<sup>1.</sup> Floating-point operation**: A floating-point operation (FLOP) is a type of computer operation. One FLOP represents a single arithmetic operation involving floating-point numbers, such as addition, subtraction, multiplication, or division.



Computation is measured in total petaFLOP, which is 10<sup>15</sup> floating-point operations<sup>1</sup> estimated from Al literature, albeit with some uncertainty. Estimates are expected to be accurate within a factor of 2, or a factor of 5 for recent undisclosed models like GPT-4.





Data source: Epoch (2024)

OurWorldinData.org/artificial-intelligence | CC BY



**<sup>1.</sup> Floating-point operation**: A floating-point operation (FLOP) is a type of computer operation. One FLOP represents a single arithmetic operation involving floating-point numbers, such as addition, subtraction, multiplication, or division.

## **Supervised Learning for Surrogate Models**

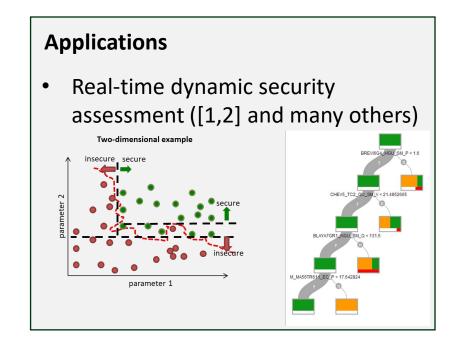
Notation: Power system s, model m, parameter x

**Objective:** assess  $m(x) \rightarrow y$  very fast and often

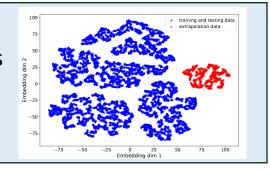
#### Surrogate approach

- 1. Generate a training dataset  $\Omega^T = \{(x_i, y_i)\}_{i=1}^N$  where  $y_i = m(x_i)$  from the full simulator
- 2. Train surrogate  $f(x) \to \hat{y}$  with supervised loss  $\sum_{i \in \Omega^T} ||y_i \hat{y}_i||$
- 3. Use  $f(x_j)$  for new  $j \notin \Omega^T$

Benefit: speed at inference



- Out of distribution risks: What if s and m changes? e.g., topology changes
- What if the model is inaccurate  $s \neq m$ ? e.g., inverter-based controls
- Need large, representative training data





## **Physics-Informed Learning**

**Objective:** surrogate learning enhanced with physics knowledge from model m

**Idea:** Incorporate physics residual (e.g. from a PDE or simulator) to geode learning and improve generalization

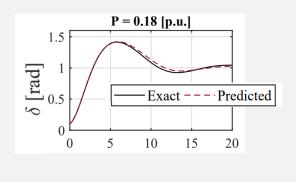
#### **Physics-informed approach**

- 1. Generate offline training dataset  $\Omega^T = \{(x_i, y_i)\}_{i=1}^N$  with  $y_i = m(x_i)$
- 2. Train surrogate  $f(x) \to \hat{y}$  on composite loss  $\sum_{i \in \Omega^T} ||y_i \hat{y}_i|| + \mathcal{L}_{phys}(f(x_i), m)$
- 3. Use  $f(x_i)$  for new  $j \notin \Omega^T$

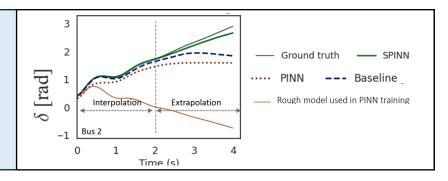
Benefits: Better generalisation performance with fewer training samples

#### **Applications**

 Extrapolation in time-domain for dynamic analysis in power systems



- Model inaccuracy  $s \neq m$
- Changes in *s* or *m*
- Data sparsity
- Multi-loss scaling causes training instability
- Scaling issues to many physical loss terms in power systems





## Weakly-Supervised (E2E) Learning

**Objective:** learn models f(x) for downstream task even when exact labels  $y_i = m(x_i)$  from the simulator m are unavailable, uncertain, or only indirectly defined.

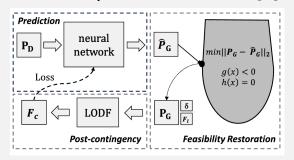
#### **Approach**

- 1. Generate many inputs  $\Omega^T = \{(x_i)\}_{i=1}^N$
- 2. Model task loss  $\sum_{i \in \Omega^T} \mathcal{L}(m(f(x_i)))$
- 3. Use  $f(x_i)$  for new  $j \notin \Omega^T$

Benefits: learning for computationally expensive or ill-defined problems

#### **Applications**

- Learn to predict effective inputs to OPF[6]
- Replace conventional solvers with NN [7]
- Distribution system state estimation [8]
- N-k security constrained OPF [9]



- Inexact supervision  $s \neq m$  not so important as success defined by task-loss
- System shift in *s* or *m*
- Data coverage. Diverse samples are needed for generalization



## **Reinforcement Learning**

**Notation:** Environment S, action a, state x

**Objective:**  $\pi(a|x)$  to maximise  $J(\pi) = \mathbb{E}_{\pi}[\sum_{t=0}^{T} \gamma^{t} r(x_{t}, a_{t})]$ 

**Idea:** Learn by interacting with the environment No supervision, no explicit  $y_i$  labels

#### **Approach**

1. Interact with environment S

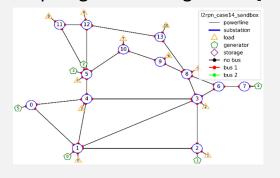
2. Collect many state-action-reward transitions  $\Omega^T = \{(x_t, a_t, r_t, x_t')\}$ 

3. Use  $\pi$  online for new states  $t \notin \Omega^T$ 

#### **Applications**

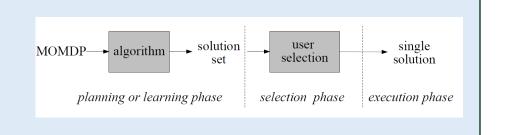
action

- Control PV inverters [10]
- Demand response [11]
- Topological reconfiguration[12]



#### **Challenges**

- Changes in the environment S
- High-dimensional state & action spaces (often heuristics are applied)
- Are the actions physically feasible?
- Safety & risks: How to explore safely?
- How about Model Predictive Control and Multi-Stage Optimization?





Agent

Environment

reward

 $x_t$ 

## **Self-Supervised Learning**

**Objective:** Learn a **useful internal representation** from unlabeled data by solving a **pretext task** — no human-labeled or simulator-labeled outputs required.

**Idea**: instead of training on  $(x_i, y_i)$  train on auto-generated pseudo-labels or tasks constructed from structure  $x_i$ 

#### **Approach**

- 1. Generate many inputs  $\Omega^T = \{(x_i)\}_{i=1}^N$
- 2. Define self-supervised pretext loss  $\mathcal{L}_{pretext}(f(x_i))$
- 3. Train encoder  $\sum_{i \in \Omega^T} \mathcal{L}_{pretext}(f(x_i))$
- 4. Use f(x) for downstream task (e.g. forecasting, OPF, estimation)

Benefits: Good initialization when little data, good transfer to downstream tasks

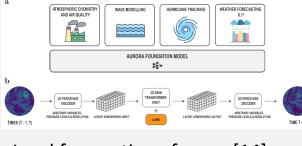
#### **Challenges**

- Design pretext loss and model architectures with broad set of tasks, grid conditions, topologies
- Generate large data sets

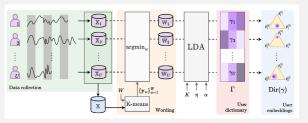
• ...

#### **Applications**

- Natural Language Processing
- Weather foundational models
- Earth system foundational models [13]



#### Load forecasting of users [14]



Grid foundation models (GFM) [15]

Tell me your electricity

consumption

price

contract

supplier

mavonnaise

Descending probability

## **Graph Neural Networks**

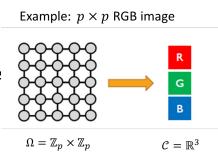
**Objective:** Improve generalization performance in learning tasks on network-structured systems (like power grids)

**Idea:** embedding graph topology directly into the model architecture as bias

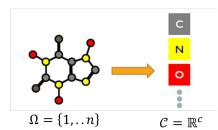
#### **Approach**

- 1. Construct graph  $G = (V, \mathcal{E})$  with features on nodes and edges
- 2. Define  $f_{GNN}$  and learn with message passing on supervised loss  $\sum_{i \in \Omega^T} ||y_i \hat{y}_i||$
- 3. Use  $f(x_i)$  for new  $j \notin \Omega^T$  or on unseen graphs G'

**Benefits:** Data efficient, generalisation to changes in topologies

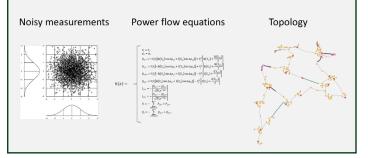


Example: molecular graph

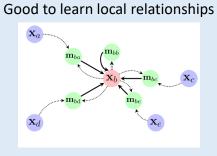


#### **Applications**

- Graph neural solvers [16] for ACOPF [17]
- Distribution system state estimation



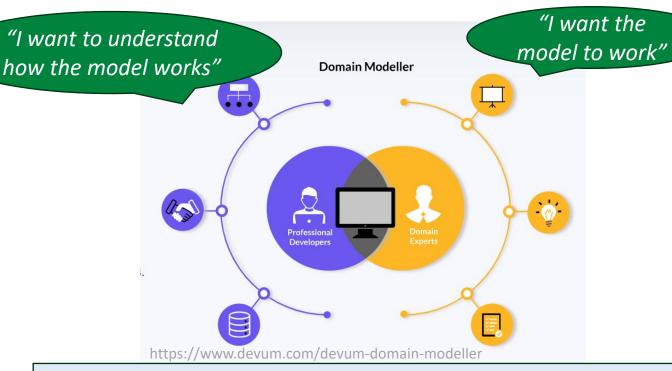
- Model inaccuracy  $s \neq m$
- Long-range dependencies are difficult to learn. Power system topology is sparse
- Challenging to learn for *global* problems (e.g. ACOPF)





## **Explainable & Interpretable Al**

**Objective:** provide **human-understandable reasoning** behind AI decisions.



#### **Applications**

- Interpretable structures (e.g. decision trees) for security assessments [18]
- Post-hoc explanations to complex models for transient stability based, e.g. SHAP values [19]

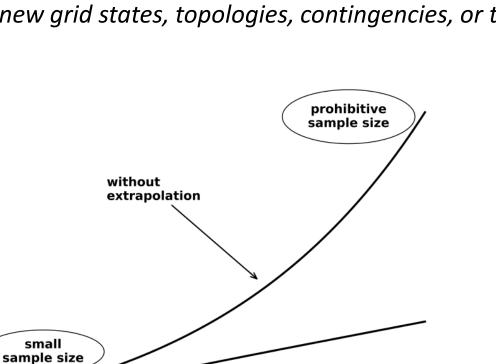
- Some trained models may not be able to state performance guarantees
- Is this action physical compliant?



## Generalisation to changes in s or m

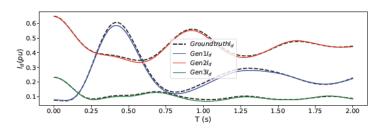
The model performs well not just on training data, but on **unseen scenarios** — new grid states, topologies, contingencies, or time horizons.

Model input dimensionality (R)



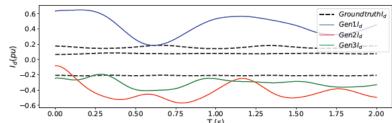






(a)  $I_d$  current trajectory

#### **Extrapolation in nonlinear domain (discrete)**







training and testing data extrapolation data



samples

Number

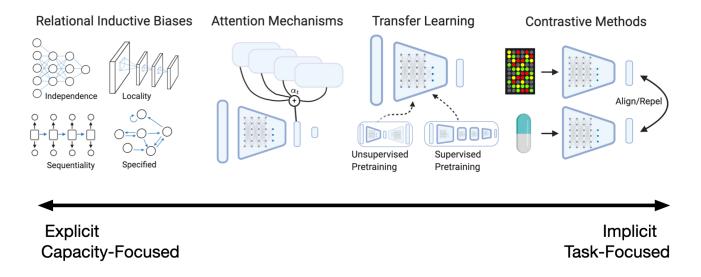
log(N) ₹

small

extrapolation

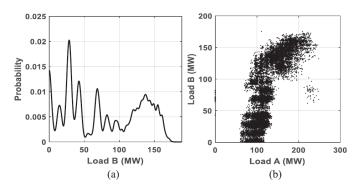
## **Challenge: Data-efficiency**

- Data efficiency is critical
- Embedding inductive bias and learning task-aware representations helps supervised models generalise better — even with limited labels.

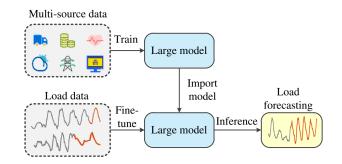


#### Sampling synthetic data & use real-data

#### **Snapshot sampling**



#### Time-series foundational models







[21] https://sgfin.github.io/2020/06/22/Induction-Intro/

[22] Konstantelos, I., Sun, M., Tindemans, S. H., Issad, S., Panciatici, P., & Strbac, G. (2018). Using vine copulas to generate representative system states for machine learning. IEEE Transactions on Power Systems, 34(1), 225-235.

[23] Al-Amin Bugaje, Jochen L. Cremer, Goran Strbac, "Split-based Sequential Sampling for Realtime Security Assessment", International Journal of Electrical Power & Energy Systems, 2022

[24] A. Venzke, D.K. Molzahn, S. Chatzivasileiadis, (2019). Efficient Creation of Datasets for Data-Driven Power System Applications, arXiv:1910.01794

## Model inaccuracy $s \neq m$ (data quality issues)

"All models are wrong, but some are useful", George E. P. Box

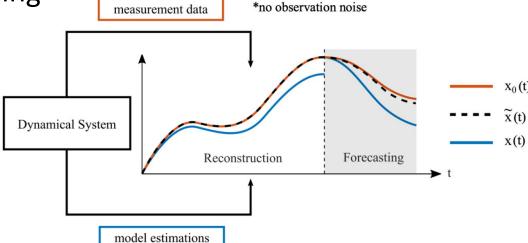
- Example challenges
  - Distribution: Inaccurate transformer-tap positions
  - Transmission: Converter-based control models are unknown

Sim-to-Real Domain Adaptation



Possible techniques: Parameter estimation to develop probabilistic and

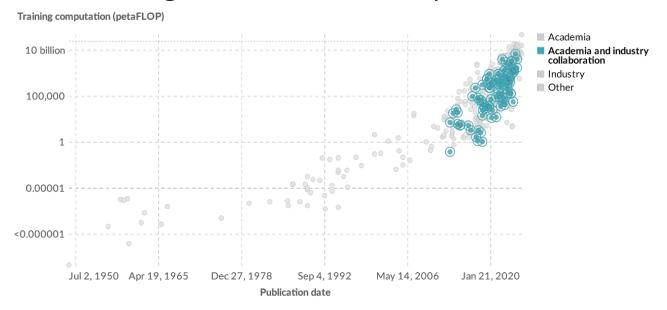
deterministic models, discrepancy learning





## **Conclusions**

Let's work together to realise the potential of AI-based methods



**Data4Grids project** 

Let's develop good representations to learn for grids



- How to train data-efficiently models across system operators?
- Know when your model works and when it does not work (generalisation)

## Thank you

#### **Speaker**

#### **Jochen Cremer**

Associate Professor IEPG, TU Delft

Web: <a href="https://www.tudelft.nl/ai/delft-ai-energy-lab">https://www.tudelft.nl/ai/delft-ai-energy-lab</a>

Personal <u>www.jochen-cremer.com</u>

Email: j.l.cremer@tudelft.nl

Code: <a href="https://github.com/TU-Delft-Al-Energy-Lab">https://github.com/TU-Delft-Al-Energy-Lab</a>



