# Learning for Power System Dynamics: The Generalization Challenge

**Dr. Jochen L. Cremer Associate Professor** 

https://www.Jochen-Cremer.com

4<sup>th</sup> GridFM Workshop Aachen, Germany



# Credits & team



Olayiwola Arowolo



Jochen Stiasny



Maosheng Yang



Haiwei Xie



Al Initiative





Mert Karaçelebi



Al-Amin Bugaje



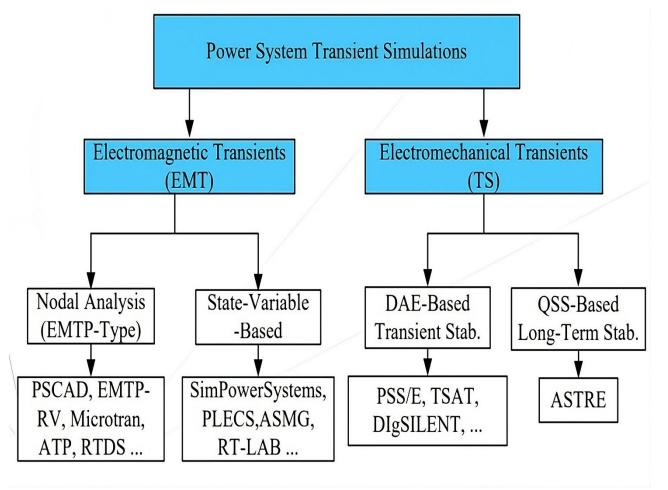
Federica Bellizio



Goran Strbac

# Power System Transient Simulation

- Transient simulation is used to assess the dynamic security of the power system to various contingencies
- Different simulation tools exist; the tool of choice depends on the phenomena being investigated
- Simulation tools are mature; in development for the last 40 years

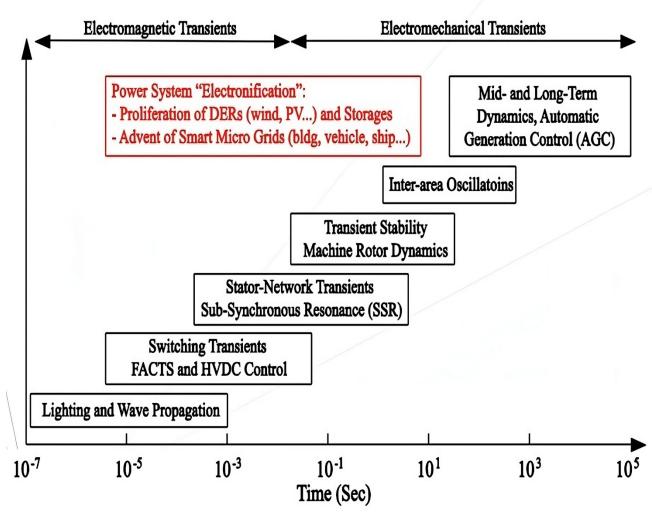






# **EMT versus RMS simulation**

- Electromechanical transient (RMS) simulations are for slower dynamics
- Slower dynamics are dominant in conventional power systems
- EMT simulations are for faster dynamics and switching transients
- Fast dynamics from inverter switching are increasingly dominant in low-inertia systems







# Transient Simulation Bottleneck

Simulation tool **Operator/ Decision maker Operating Condition/Contingency** Scenario A PSS/E / **PSCAD Security Status** Scenario B Scenario C **Speed bottleneck** Al Initiative

# Supervised Learning for Dynamics Surrogate

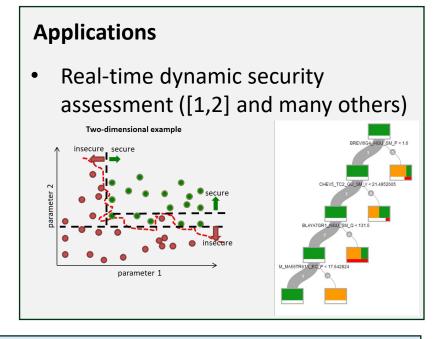
Notation: Power system s, model m, parameter x

**Objective:** assess  $m(x) \rightarrow y$  **very** fast and **often** 

## Surrogate approach

- 1.Generate a training dataset  $\Omega^T = \{(x_i, y_i)\}_{i=1}^N$  where  $y_i = m(x_i)$  from the full simulator
- 2.Train surrogate  $f(x) \to \hat{y}$  with supervised loss  $\sum_{i \in \Omega^T} ||y_i \hat{y}_i||$ 3.Use  $f(x_i)$  for new  $j \notin \Omega^T$

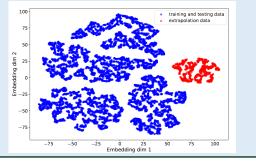
Benefit: speed at inference



## **Challenges**

- Out of distribution risks: What if s and m changes? e.g., topology changes
- What if the model is inaccurate  $s \neq m$ ? e.g., inverter-based controls
- Need large, representative training data

Al Initiative



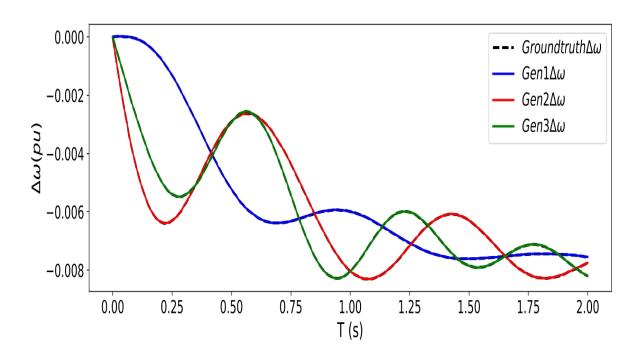


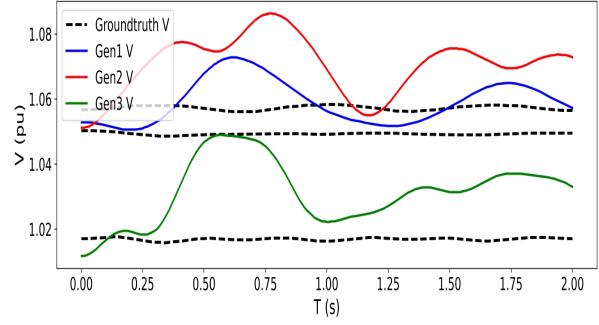
# Extrapolation of ML Models in Transient Simulation



Model performs well for continuous disturbances within the training data distribution

Model fails to extrapolate for OOD discrete disturbances.







# Physics-Informed Learning

**Objective:** surrogate learning enhanced with physics knowledge from model *m* 

Idea: Incorporate physics residual (e.g. from a PDE or simulator) to guide learning and improve generalization

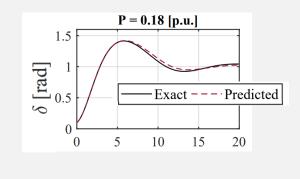
#### **Physics-informed approach**

- Generate offline training dataset  $\Omega^T = \{(x_i, y_i)\}_{i=1}^N$  with  $y_i = m(x_i)$
- Train surrogate  $f(x) \to \hat{y}$  on composite loss  $\sum_{i \in \Omega^T} ||y_i \hat{y}_i|| + \mathcal{L}_{phys}(f(x_i), m)$
- Use  $f(x_i)$  for new  $j \notin \Omega^T$

**Benefits:** Better generalisation performance with **fewer training samples** 

## **Applications**

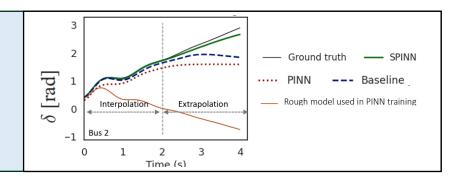
Extrapolation in time-domain for dynamic analysis in power systems



### **Challenges**

- Model inaccuracy  $s \neq m$
- Changes in s or m
- Data sparsity
- Multi-loss scaling causes training instability
- Scaling issues to many physical loss terms in power systems

Al Initiative





# Self-Supervised Learning

**Objective:** Learn a **useful internal representation** from unlabeled data by solving a **pretext task** — no human-labeled or simulator-labeled outputs required.

**Idea**: instead of training on  $(x_i, y_i)$  train on auto-generated pseudo-labels or tasks constructed from structure  $x_i$ 

## **Approach**

- 1. Generate many inputs  $\Omega^T = \{(x_i)\}_{i=1}^N$
- 2. Define self-supervised pretext loss  $\mathcal{L}_{pretext}(f(x_i))$
- 3. Train encoder  $\sum_{i \in \Omega^T} \mathcal{L}_{pretext}(f(x_i))$
- 4. Use f(x) for downstream *task* (e.g. forecasting, OPF, estimation)

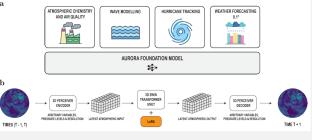
Benefits: Good initialization when little data, good transfer to downstream tasks

## **Challenges**

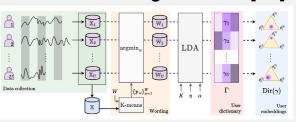
- Design pretext loss and model architectures with broad set of tasks, grid conditions, topologies
- Generate large data sets
- ..

## **Applications**

- Natural Language Processing
- Weather foundational models
- Earth system foundational models [9]



## Load forecasting of users [10]



Grid foundation models (GFM) [11]



Tell me your electricity

Descending probability

consumption

price

contract

supplier

mayonnaise

# Opportunities for Transient Simulation Foundation Model

Accelerating transient simulation with GridFM can unlock new use cases with more comprehensive scenario assessments

#### Potential use cases:

- Planning and commissioning HVDC/FACT devices
  - Investigating interaction phenomena between HVDC and the rest of the grid
  - Testing controllers and software updates
  - Verification with onsite measures
- Investigating inter-area oscillations
  - Getting common in weak grids
  - Root cause of some of these events still unknown
  - Sub-synchronous oscillations from controller interactions need EMT simulations

#### Non-conventional use cases:

- How to expand the system that maximises transient stability for k-faults?
- How to operate the system secure against transients?

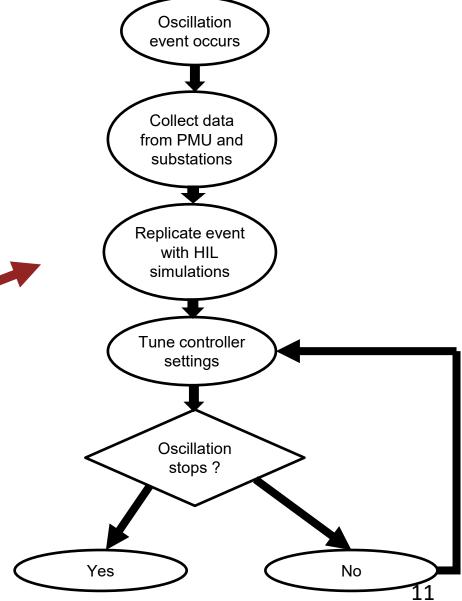


Opportunities for Transient Simulation Foundation Model

Integration of offshore wind farms

- Require detailed models of turbines and controllers
- Assessment of background harmonic amplification
- Locating sources of sub-synchronous oscillations

The existing setting is time-consuming



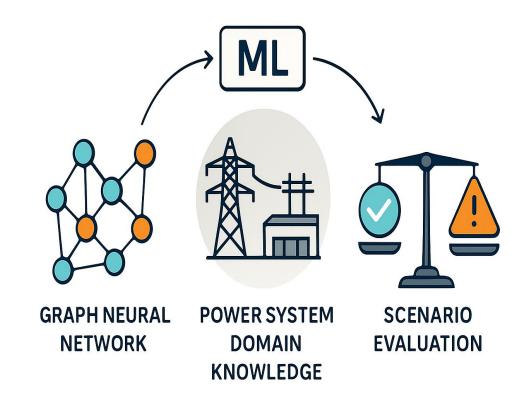


Al Initiative

DAIE

# Approaching a Foundation Model for Transient Simulation

- Potential for graph-based modelling of power system transients
- Graphs can easily handle discrete changes to system topology
- EMT and RMS simulations may be unified by simulating a system of DAEs.
- The best way to formulate an appropriate graph is an open question

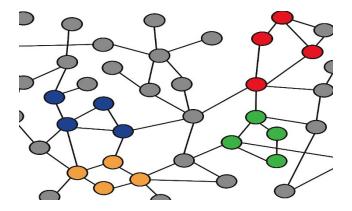




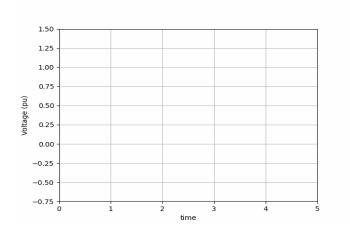
# Challenges

- Large-scale simulation training dataset
  - Data variety (synthetic and Real)
  - Data validity
  - Data privacy
- Modelling challenges
  - Architectural definition
  - Computational cost of pretraining
  - Consistency with physical laws
- Application / Validation
  - Experimental or Physical validation

## Graph input



Simulation output



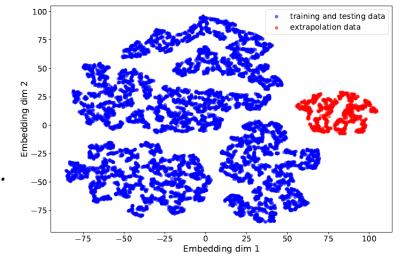


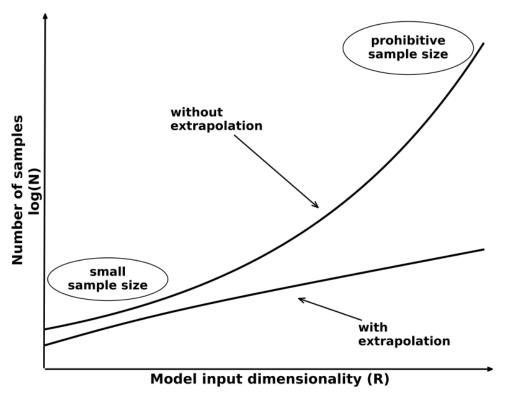
[14] Al-Amin Bugaje, Jochen L. Cremer, Goran Strbac "Generating Quality Datasets for Real-Time Security Assessment: Balancing Historically Relevant and Rare Feasible Operating Condition" *International Journal of Electrical Power & Energy Systems*, 2023

[15] F. Bellizio, J. L. Cremer, G. Strbac, "Machine-learned security assessment for changing system topologies." International Journal of Electrical Power & Energy Systems 134. 2022: 107380.

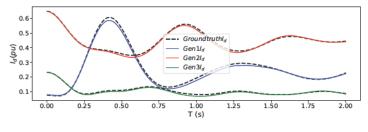
# Generalisation to changes in s or m

The model performs well not just on training data, but on **unseen scenarios** — new grid states, topologies, contingencies, or time horizons.



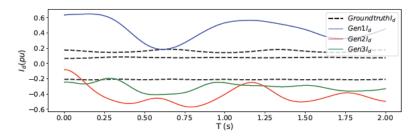


## **Extrapolation in continuous domain**



(a)  $I_d$  current trajectory

## **Extrapolation in nonlinear domain (discrete)**

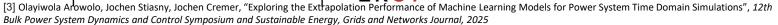






Al Initiative

DAIE





# Power Flow is at the heart of many power system tasks How should we formulate a foundational PF?



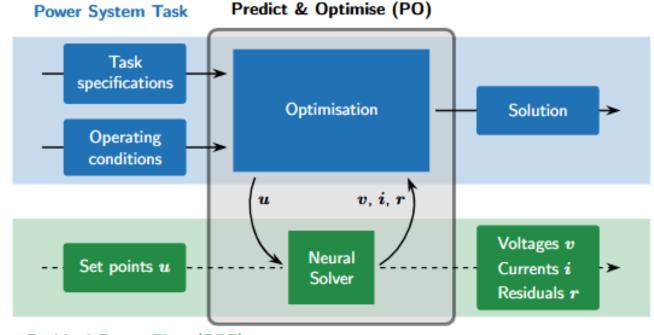
#### Residual power flow (RPF)

- RPF quantifies infeasibility
- Simpler formulation for neural solvers

### **Predict-and-Optimise (PO)**

- Flexible handling of constraints and objectives
- While minimising infeasibility

→ Preprint soon available



Residual Power Flow (RPF)





# Model inaccuracy $s \neq m$ ("data quality")

"All models are wrong, but some are useful", George E. P. Box

## Example challenges

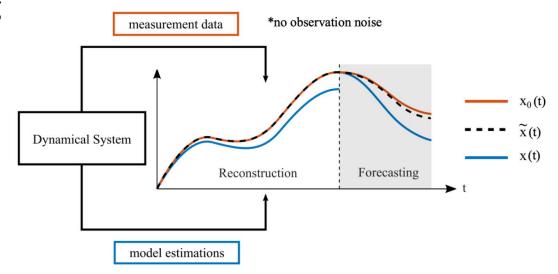
- Distribution: Inaccurate transformer-tap positions
- Transmission: Converter-based control models are unknown

Sim-to-Real Domain Adaptation



Possible techniques: Parameter estimation to develop probabilistic and

deterministic models, discrepancy learning







## Conclusion: We have work to do

## **Data Generation and Synthesis**

- Synthetic data generation
- Data integration from real power systems
- Data preprocessing

## **Model Development**

- Defining pretraining task
- Representation learning
- Multi-timescale modelling

#### **Model Validation**

- Fine-tuning the pretrained model on different simulation tasks
- Physical validation with hardware-in-the-loop
- Uncertainty quantification



# Thank you for your attention

Dr. Jochen L. Cremer

**Associate Professor** 

https://www.Jochen-Cremer.com



## More references

- Jatskevich, J. (2023, May 25). Challenges in Transient Simulation of Fast-Evolving Energy Systems, Imperial College London.
- Olayiwola Arowolo, Jochen Stiasny, Jochen Cremer, Exploring extrapolation of machine learning models for power system time domain simulation, Sustainable Energy, Grids and Networks, Volume 43, 2025.
- Jochen Stiasny, Spyros Chatzivasileiadis, Physics-informed neural networks for time-domain simulations: Accuracy, computational cost, and flexibility, Electric Power Systems Research, Volume 224, 2023
- T. Cheng, R. Chen, N. Lin, T. Liang and V. Dinavahi, "Machine-Learning-Reinforced Massively Parallel Transient Simulation for Large-Scale Renewable-Energy-Integrated Power Systems," in IEEE Transactions on Power Systems, vol. 40, no. 1, pp. 970-981, Jan. 2025
- Zhao, J., Zhu, Z., Galkin, M., Mostafa, H., Bronstein, M., & Tang, J. (2025). Fully-inductive Node Classification on Arbitrary Graphs. arXiv [Cs.LG]. Retrieved from <a href="http://arxiv.org/abs/2405.20445">http://arxiv.org/abs/2405.20445</a>
- Ye, Z., Huang, X., Chen, L., Liu, H., Wang, Z., & Dong, B. (2025). PDEformer: Towards a Foundation Model for One-Dimensional Partial Differential Equations. arXiv [Math.NA]. Retrieved from http://arxiv.org/abs/2402.12652
- Bodnar, C., Bruinsma, W.P., Lucic, A. et al. A foundation model for the Earth system. Nature 641, 1180-1187 (2025)
- Das, A., Kong, W., Sen, R., & Zhou, Y. (2024). A decoder-only foundation model for time-series forecasting. *Proceedings of the 41st International Conference on Machine Learning*. Vienna, Austria: JMLR.org.

